Issue 9, 2024

Machine learning assisted construction of a shallow depth dynamic ansatz for noisy quantum hardware

Abstract

The development of various dynamic ansatz-constructing techniques has ushered in a new era, making the practical exploitation of Noisy Intermediate-Scale Quantum (NISQ) hardware for molecular simulations increasingly viable. However, such ansatz construction protocols incur substantial measurement costs during their execution. This work involves the development of a novel protocol that capitalizes on regenerative machine learning methodologies and many-body perturbation theoretical measures to construct a highly expressive and shallow ansatz within the variational quantum eigensolver (VQE) framework with limited measurement costs. The regenerative machine learning model used in our work is trained with the basis vectors of a low-rank expansion of the N-electron Hilbert space to identify the dominant high-rank excited determinants without requiring a large number of quantum measurements. These selected excited determinants are iteratively incorporated within the ansatz through their low-rank decomposition. The reduction in the number of quantum measurements and ansatz depth manifests in the robustness of our method towards hardware noise, as demonstrated through numerical applications. Furthermore, the proposed method is highly compatible with state-of-the-art neural error mitigation techniques. This resource-efficient approach is quintessential for determining spectroscopic and other molecular properties, thereby facilitating the study of emerging chemical phenomena in the near-term quantum computing framework.

Graphical abstract: Machine learning assisted construction of a shallow depth dynamic ansatz for noisy quantum hardware

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
31 Oct 2023
Accepted
16 Jan 2024
First published
17 Jan 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 3279-3289

Machine learning assisted construction of a shallow depth dynamic ansatz for noisy quantum hardware

S. Halder, A. Dey, C. Shrikhande and R. Maitra, Chem. Sci., 2024, 15, 3279 DOI: 10.1039/D3SC05807G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements