Confined dual Lewis acid centers for selective cascade C–C coupling and deoxygenation†
Abstract
The selective formation of C–C bonds, coupled with effective removal of oxygen, plays a crucial role in the process of upgrading biomass-derived oxygenates into fuels and chemicals. However, co-feeding reactants with water is sometimes necessary to assist binding sites in catalytic reactions, thereby achieving desirable performance. Here, we report the design of a CeSnBeta catalyst featuring dual Lewis acidic sites for the efficient production of isobutene from acetone via C–C coupling followed by deoxygenation. By incorporating Ce species onto SnBeta, which was synthesized through liquid-phase grafting of dealuminated Beta, we created confined dual Lewis acidic centers within Beta zeolites. The cooperative action of Ce species and framework Sn sites within this confined environment enabled selective catalysis of the acetone-to-isobutene cascade reactions, showcasing enhanced stability even without the presence of water.