Issue 10, 2024

Probing the stability of metal–organic frameworks by structure-responsive mass spectrometry imaging

Abstract

The widespread application of metal–organic frameworks (MOFs) is seriously hindered by their structural instability and it is still very challenging to probe the stability of MOFs during application by current techniques. Here, we report a novel structure-responsive mass spectrometry (SRMS) imaging technique to probe the stability of MOFs. We discovered that intact CuBTC (as a model of MOFs) could generate the characteristic peaks of organic ligands and carbon cluster anions in laser desorption/ionization mass spectrometry, but these peaks were significantly changed when the structure of CuBTC was dissociated, thus enabling a label-free probing of the stability. Furthermore, SRMS can be performed in imaging mode to visualize the degradation kinetics and reveal the spatial heterogeneity of the stability of CuBTC. This technique was successfully applied in different application scenarios (in water, moist air, and CO2) and also validated with different MOFs. It thus provides a versatile new tool for better design and application of environment-sensitive materials.

Graphical abstract: Probing the stability of metal–organic frameworks by structure-responsive mass spectrometry imaging

Supplementary files

Article information

Article type
Edge Article
Submitted
02 Jan 2024
Accepted
30 Jan 2024
First published
06 Feb 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 3698-3706

Probing the stability of metal–organic frameworks by structure-responsive mass spectrometry imaging

Y. Lin, K. Min, W. Ma, X. Yang, D. Lu, Z. Lin, Q. Liu and G. Jiang, Chem. Sci., 2024, 15, 3698 DOI: 10.1039/D4SC00021H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements