Issue 34, 2024

Unlocking comprehensive molecular design across all scenarios with large language model and unordered chemical language

Abstract

Molecular generation stands at the forefront of AI-driven technologies, playing a crucial role in accelerating the development of small molecule drugs. The intricate nature of practical drug discovery necessitates the development of a versatile molecular generation framework that can tackle diverse drug design challenges. However, existing methodologies often struggle to encompass all aspects of small molecule drug design, particularly those rooted in language models, especially in tasks like linker design, due to the autoregressive nature of large language model-based approaches. To empower a language model for a wider range of molecular design tasks, we introduce an unordered simplified molecular-input line-entry system based on fragments (FU-SMILES). Building upon this foundation, we propose FragGPT, a universal fragment-based molecular generation model. Initially pretrained on extensive molecular datasets, FragGPT utilizes FU-SMILES to facilitate efficient generation across various practical applications, such as de novo molecule design, linker design, R-group exploration, scaffold hopping, and side chain optimization. Furthermore, we integrate conditional generation and reinforcement learning (RL) methodologies to ensure that the generated molecules possess multiple desired biological and physicochemical properties. Experimental results across diverse scenarios validate FragGPT's superiority in generating molecules with enhanced properties and novel structures, outperforming existing state-of-the-art models. Moreover, its robust drug design capability is further corroborated through real-world drug design cases.

Graphical abstract: Unlocking comprehensive molecular design across all scenarios with large language model and unordered chemical language

Supplementary files

Article information

Article type
Edge Article
Submitted
07 Jun 2024
Accepted
28 Jul 2024
First published
29 Jul 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 13727-13740

Unlocking comprehensive molecular design across all scenarios with large language model and unordered chemical language

J. Yue, B. Peng, Y. Chen, J. Jin, X. Zhao, C. Shen, X. Ji, C. Hsieh, J. Song, T. Hou, Y. Deng and J. Wang, Chem. Sci., 2024, 15, 13727 DOI: 10.1039/D4SC03744H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements