Issue 42, 2024

A photoinduced electron-transfer strategy for switchable fluorescence and phosphorescence in lanthanide-based coordination polymers

Abstract

Smart optical materials with tunable fluorescence and room temperature phosphorescence (RTP) exhibit promising application prospects in the field of intelligent switches, information security, etc. Herein, a tetraimidazole derivative was grafted to one-dimensional lanthanum-diphosphonate through H-bonds, generating a coordination polymer (CP), (H4-TIBP)·[La2Li(H2-HEDP)4(H-HEDP)]·3H2O (termed La; TIBP = 3,3,5,5-tetra(imidazole-1-yl)-1,1-biphenyl; H4-HEDP = 1-hydroxyethylidene-1,1-diphosphonic acid) with a three-dimensional supramolecular structure. La shows dynamic fluorescence from blue to red and switchable monotonous yellowish-green RTP, which can be manipulated by reversible photochromism. It is worth noting that Eu3+/Tb3+-doped CPs exhibit time-resolved (red to yellow) and monotonous green afterglow, respectively, which can be attributed to multiple emissions with different decay rates. The dynamic and multicolor luminescence endows these CPs with potential for application in the domains of optical communications, multi-step encryption, and anti-counterfeiting. This work not only integrates color-adjustable fluorescence, switchable RTP, and photochromism in one material, but also realizes the manipulation of the resultant optical performances via photochromism, paving the pathway for the design and synthesis of smart optical materials.

Graphical abstract: A photoinduced electron-transfer strategy for switchable fluorescence and phosphorescence in lanthanide-based coordination polymers

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
12 Jul 2024
Accepted
01 Oct 2024
First published
02 Oct 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 17642-17651

A photoinduced electron-transfer strategy for switchable fluorescence and phosphorescence in lanthanide-based coordination polymers

Y. Ma, F. Xu, X. Ren, F. Chen, J. Pan, J. Li, S. Han and G. Wang, Chem. Sci., 2024, 15, 17642 DOI: 10.1039/D4SC04632C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements