Issue 46, 2024

Multi-resonance emitters with room-temperature phosphorescence in amorphous state and excited by visible light

Abstract

Unlike boron, nitrogen-containing multi-resonance emitters with thermally activated delayed fluorescence, here we report boron, sulfur (B, S)-based multi-resonance emitters with room-temperature phosphorescence (RTP) by inserting thiophene into a 5,9-dithia-13b-boranaphtho[3,2,1-de]anthracene skeleton that simultaneously realizes large singlet–triplet energy splitting and strong spin–orbital coupling, leading to efficient room-temperature phosphorescence in an amorphous state. Unlike most RTP emitters with ultraviolet excitation, the multi-resonance RTP emitters exhibit strong phosphorescence under daily-use blue/white LED lamps owing to their intense absorption in the visible-light region (400–486 nm). Meanwhile, such RTP behavior can be tuned by the number and fusing pattern of the thiophene moieties, with the emitters containing thiophene linked to boron atoms via α-positions exhibiting bathochromatically shifted emissions and longer phosphorescence lifetimes (47.7–119.4 ms) than those with β-position linkages. Given these features, amorphous RTP films with different emission colors and lifetimes are fabricated by dispersing the emitters in a poly(methyl methacrylate) matrix, and their applications in multi-color anti-counterfeiting are presented. These findings thus open a way to develop multi-resonance emitters as a new family of pure organic RTP materials that can work in an amorphous state and under visible-light excitation.

Graphical abstract: Multi-resonance emitters with room-temperature phosphorescence in amorphous state and excited by visible light

Supplementary files

Article information

Article type
Edge Article
Submitted
11 Aug 2024
Accepted
18 Oct 2024
First published
24 Oct 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 19432-19442

Multi-resonance emitters with room-temperature phosphorescence in amorphous state and excited by visible light

B. Du, Y. Wu, X. Wang, H. Tian, S. Shao and L. Wang, Chem. Sci., 2024, 15, 19432 DOI: 10.1039/D4SC05383D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements