Issue 44, 2024

Highly efficient pure organic near-ultraviolet (NUV) electro-fluorescent materials with high electron mobility and improved hole mobility

Abstract

The lack of blue-emissive materials with high efficiency and excellent color purity commonly represents a pivotal obstacle in the development of organic light-emitting diodes (OLEDs). In this work, two blue to near-ultraviolet (NUV) donor–π–acceptor (D–π–A) emitters based on a fluorene π-bridge, 9-PCZCFTZ and 3-PCZCFTZ, are thus designed and synthesized, and non-doped devices derived from these two materials exhibit electroluminescence (EL) emission peaks at 404 nm and 417 nm, respectively. Interestingly, due to the specific stacking, a phenomenon appears in both materials in which the mobility of the electron is much higher than that of the hole, prompting us to use host doping to increase the hole mobilities, which ultimately leads to excellent OLED performances. As a result, the maximum external quantum efficiency (EQEmax) values of 9-PCZCFTZ and 3-PCZCFTZ in the doped devices reach as high as 14.5% and 10.8% respectively. Notably, both OLEDs show high blue purity very close to the BT.2020 standard.

Graphical abstract: Highly efficient pure organic near-ultraviolet (NUV) electro-fluorescent materials with high electron mobility and improved hole mobility

Supplementary files

Article information

Article type
Edge Article
Submitted
21 Aug 2024
Accepted
04 Oct 2024
First published
09 Oct 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 18601-18607

Highly efficient pure organic near-ultraviolet (NUV) electro-fluorescent materials with high electron mobility and improved hole mobility

H. Zhou, R. Wang, M. Sun, Y. Zhou, L. Zhang, J. Song, Q. Sun, S. Zhang, W. Yang and S. Xue, Chem. Sci., 2024, 15, 18601 DOI: 10.1039/D4SC05625F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements