Issue 46, 2024

Enantioselective dearomative formal (3+3) cycloadditions of bicyclobutanes with aromatic azomethine imines: access to fused 2,3-diazabicyclo[3.1.1]heptanes

Abstract

Although cycloadditions of bicyclobutanes (BCBs) have emerged as a reliable approach for producing bicyclo[n.1.1]alkanes such as azabicyclo[3.1.1]heptanes (aza-BCHeps), serving as saturated bioisosteres of arenes, the catalytic asymmetric variant remains underdeveloped and presents challenges. Herein, we developed several Lewis acid-catalyzed systems for the challenging dearomative (3+3) cycloaddition of BCBs and aromatic azomethine imines. This resulted in fused 2,3-diazabicyclo[3.1.1]heptanes, introducing a novel chemical space for the caged hydrocarbons. Moreover, an asymmetric Lewis acid catalysis strategy was devised for the (3+3) cycloadditions of BCBs and N-iminoisoquinolinium ylides, forming chiral diaza-BCHeps with up to 99% yield and 97% ee. This study showcases a unique instance of asymmetric (3+3) cycloaddition facilitated by the creation of a chiral environment via the activation of BCBs.

Graphical abstract: Enantioselective dearomative formal (3+3) cycloadditions of bicyclobutanes with aromatic azomethine imines: access to fused 2,3-diazabicyclo[3.1.1]heptanes

Supplementary files

Article information

Article type
Edge Article
Submitted
19 Sep 2024
Accepted
31 Oct 2024
First published
08 Nov 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 19488-19495

Enantioselective dearomative formal (3+3) cycloadditions of bicyclobutanes with aromatic azomethine imines: access to fused 2,3-diazabicyclo[3.1.1]heptanes

X. Yang, F. Wu, W. Wu, X. Zhang and J. Feng, Chem. Sci., 2024, 15, 19488 DOI: 10.1039/D4SC06334A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements