Issue 8, 2024

Cobalt-based metal–organic framework for desulfurization of thiophene as a model fuel

Abstract

Persistent economic growth results in rising energy use, which in turn creates new environmental burdens and health risks for people due to the release of toxic gases from the combustion of fuel with sulfur-containing compounds. A cobalt-based MOF (BITSH-1) was investigated for the adsorptive desulfurization of thiophene in iso-octane as a model fuel. BITSH-1 showed a very high thiophene adsorption capacity of 95.38 mg g−1. Interestingly, BITSH-1 with a high surface area of 349.07 m2 g−1 achieves high adsorption efficiency at room temperature with substantially less time consumption without fuel oxidation or additional functionalization of the MOF, making it more feasible for an adsorptive desulfurization process. The recyclability of the MOF material showed good adsorption efficiency of thiophene for up to four cycles. The mechanistic features and possible interactions are discussed by modelling the thiophene molecule in the MOF with the help of SCXRD studies. Additionally, the mechanistic aspects of thiophene adsorption were corroborated using isotherms, kinetics, and thermodynamics, which ascertained that the reaction follows pseudo-order kinetics with spontaneity and feasibility. The overall process was found to be an exothermic reaction. Hence, the proposed adsorbent BITSH-1 could be a promising candidate for exclusive thiophenic separation from oil and could be promoted for the desulfurization of thiophenic model fuel.

Graphical abstract: Cobalt-based metal–organic framework for desulfurization of thiophene as a model fuel

Supplementary files

Article information

Article type
Paper
Submitted
31 Aug 2023
Accepted
24 Feb 2024
First published
27 Feb 2024
This article is Open Access
Creative Commons BY-NC license

Sustainable Energy Fuels, 2024,8, 1679-1690

Cobalt-based metal–organic framework for desulfurization of thiophene as a model fuel

M. C. Nilavu, T. Leelasree, H. Aggarwal and N. Rajesh, Sustainable Energy Fuels, 2024, 8, 1679 DOI: 10.1039/D3SE01140B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements