Issue 3, 2024

Molecular-weight effects of a homopolymer on the AB- and ABC-stacks of perforations in block copolymer/homopolymer films

Abstract

We have demonstrated the molecular-weight effects of adding homopolystyrene (hPS) on the evolution of perforated layers and double gyroids in polystyrene-block-poly(methyl methacrylate)-based films during isothermal annealing. Two homopolystyrenes of 2.8 and 17 kg mol−1 were used. To prepare blend films, PS-b-PMMA and hPSx (x: 2.8 or 17) were mixed at a weight-fraction ratio of 75/25 in toluene and then spin-coated at SiOx/Si. Spin coating inevitably produced films with thick edges at the periphery of the substrate. The structural evolution of the spun films was in situ characterized by grazing incidence small-angle X-ray scattering (GISAXS). The annealed films were then characterized using a scanning electron microscope (SEM). We found that thin middle regions behaved differently from thick beads for the films. The middle of the blend films mainly formed perforated layers with different spatial orders and orientations, depending on the molecular weight of added hPS chains. Hexagonally perforated layers quickly formed at 205 °C for PS-b-PMMA/hPS2.8 films. However, when hPS17 was used instead of hPS2.8, perforated layers formed with defects in PS-b-PMMA/hPS17 films annealed at 205 °C. Annealing at 240 °C improved the spatial order and orientation of perforated layers for a PS-b-PMMA/hPS17 film. Nevertheless, annealing at 240 °C inversely depressed the in-plane spatial order of perforated layers for a PS-b-PMMA/hPS2.8 film. The depression in the in-plane spatial order is ascribed to a dilution effect of added short chains. Compared to the middle regions, the thick beads went through several metastable phases, such as perpendicularly oriented perforated layers and double gyroids.

Graphical abstract: Molecular-weight effects of a homopolymer on the AB- and ABC-stacks of perforations in block copolymer/homopolymer films

Supplementary files

Article information

Article type
Paper
Submitted
19 Sep 2023
Accepted
30 Nov 2023
First published
01 Dec 2023

Soft Matter, 2024,20, 609-620

Molecular-weight effects of a homopolymer on the AB- and ABC-stacks of perforations in block copolymer/homopolymer films

Y. Sun, Y. Liao, H. Hung, P. Chiang and C. Su, Soft Matter, 2024, 20, 609 DOI: 10.1039/D3SM01249B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements