Isomeric polythiophene: a promising material for low voltage electronic devices†
Abstract
In this investigation, we present empirical observations detailing the manifestation of substantial negative capacitance (NC), reaching up to −1 F, within iodine-doped isomeric polythiophene (IPTh-I2). NC observed in our case is not transient but stable enough to be measured for as long as the optimum concentration of the iodine dopant is available. In contrast, undoped isomeric polythiophene (IPTh) manifests a modest positive capacitance ranging from 30 to 60 μF. The concatenation of IPTh-I2 and IPTh in the series results in an augmentation of the total capacitance of the system (∼170 μF), exemplifying a characteristic feature of NC. Conversely, a bilayer configuration consisting of IPTh:IPTh exhibits a reduction in total capacitance by 38%. A notable amplification in the dielectric constant, escalating from 30 in IPTh to approximately 2000 in IPTh-I2, signifies extensive conformational and structural alterations arising from interactions between the doped polymer chain and various iodide species, attributing to the emergence of NC. Furthermore, we document a single-sided p–n junction diode with a low knee voltage (below 0.5 V) as a model device, illustrating the potential of IPTh as a promising material for the design and development of negative capacitance-based field-effect transistors. This research offers avenues for the scientific community to conceive low knee voltage-operating diodes, transistors, supercapacitors, and various other electronic devices based on all-organic semiconductors.