Issue 24, 2024

Collective dynamics of active dumbbells near a circular obstacle

Abstract

In this article, we present the collective dynamics of active dumbbells in the presence of a static circular obstacle using Brownian dynamics simulation. The active dumbbells aggregate on the surface of a circular obstacle beyond a critical radius. The aggregation is non-uniform along the circumference, and the aggregate size increases with the activity (Pe) and the curvature radius (Ro). The dense aggregate of active dumbbells displays persistent rotational motion with a certain angular speed, which linearly increases with activity. Furthermore, we show a strong polar ordering of the active dumbbells within the aggregate. The polar ordering exhibits long-range correlation, with the correlation length corresponding to the aggregate size. Additionally, we show that the residence time of an active dumbbell on the obstacle surface increases rapidly with area fraction due to many-body interactions that lead to a slowdown of the rotational diffusion. This article further considers the dynamical behavior of a tracer particle in the solution of active dumbbells. Interestingly, the speed of the passive tracer particle displays a crossover from monotonically decreasing to increasing with the size of the tracer particle upon increasing the dumbbells' speed. Furthermore, the effective diffusion of the tracer particle displays non-monotonic behavior with the area fraction; the initial increase in diffusivity is followed by a decrease for a larger area fraction.

Graphical abstract: Collective dynamics of active dumbbells near a circular obstacle

Supplementary files

Article information

Article type
Paper
Submitted
12 Jan 2024
Accepted
20 May 2024
First published
10 Jun 2024

Soft Matter, 2024,20, 4816-4826

Collective dynamics of active dumbbells near a circular obstacle

C. Tiwari and S. P. Singh, Soft Matter, 2024, 20, 4816 DOI: 10.1039/D4SM00044G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements