Anionic starch-based hybrid cryogel-embedded ZnO nanoparticles: tuning the elasticity and pH-functionality of biocomposites with dicarboxylic acid units†
Abstract
Weakly anionic semi-interpenetrating polymer network (semi-IPN) biocomposites based on starch (ST)-incorporated poly(acrylamide-co-itaconic acid)/ZnO (ST-PAI/ZnO) were synthesized by a simple one-pot method via free radical aqueous polymerization. Hybrid biocomposites exhibited lower equilibrium swelling compared with neat copolymer gel. For both hydrogels and cryogels, swelling followed a decreasing order as copolymer PAI > starch-free PAI/ZnO > ST-PAI/ZnO gels. With the addition of 9% ST and ZnO, the swelling ratio of gels decreased from 898 to 68.3, resulting in a significant increase in elastic modulus. Compared with a fixed amount of ST, biocomposite cryogels exhibited significantly higher modulus than hydrogels. With the addition of 9% ST, the elastic modulus of cryogels reached 22.2 kPa while it was 2.7 kPa for the hydrogels. An equation expressing the effective cross-linking density of semi-IPNs presented by a cubic polynomial as a function of starch was obtained. As pH increased with the presence of dicarboxylic acid units, a gradual increase in swelling occurred at two different pH values. A gradually reproducible swelling change of semi-IPNs was depicted with pH ranging from 2.1 to 11.2. Biocomposite cryogels showed rapid swelling in a buffer solution of pH 11.2 and rapid shrinking in pH 2.1. Salt-induced swelling testing showed that the ability to reduce the degree of swelling and solubility of starch was Br− > Cl− > NO3− > SO42− for anions consistent with the Hofmeister series. Adsorption efficiency for the removal of methyl violet (MV) dye was analyzed using Langmuir, Freundlich, Dubinin–Radushkevich and Temkin isotherm models. The results confirmed that the Langmuir isotherm and pseudo-second-order model are suitable for describing MV adsorption on semi-IPN biocomposites. The synthesized biocomposites with good swelling/deswelling kinetics in different pH-buffer solutions, high saline absorbency, desirable adsorption efficiency, and acceptable pH-dependent swelling reversibility can be considered as smart hybrid materials for the adsorption of the dye in water purification tasks.