Issue 44, 2024

Lowest gelation concentration in a complex-coacervate-driven self-assembly system, achieved by redox-RAFT synthesis of high molecular weight block polyelectrolytes

Abstract

The objective of this work was to synthesize high molecular weight polyelectrolyte complex (PEC) micelles that are effective in controlling the rheology of aqueous solutions at low concentrations, paving the way for industrial applications of thickeners based on the principle of electrostatic self-assembly. Redox-initiated RAFT (reversible addition–fragmentation chain-transfer) polymerization was used to obtain anionic block polyelectrolytes based on poly(sodium 2-acrylamido-2-methylpropane sulfonate) and poly(acrylamide)–poly(AMPS)-block-poly(AM) (di-block) and poly(AMPS)-block-poly(AM)-block-poly(AMPS) (tri-block), with molecular weights of 237 kDa and 289 kDa and polydispersities of 1.29 and 1.34, respectively. A random poly(AMPS)-co-poly(AM) copolymer was also synthesized for comparison. PEC micelles were obtained upon mixing with cationic poly(N-[3-(dimethylamino)propyl]methacrylamide hydrochloride) – poly(DMAPMA), forming viscoelastic gels at unprecedented low concentrations of <3 wt% for the di-block and <1 wt% for the tri-block, which to date is the lowest demonstrated gelation concentration for a synthetic PEC micelle system. Differences between tri-block and di-block architectures are discussed, with the former being more affected by the addition of salt, which is attributed to percolated network breakdown. The random co-polymer was shown not to be an effective thickener but displayed a surprising lack of phase separation upon coacervation. The assemblies were characterized using dynamic light scattering (DLS) and cryo transmission electron microscopy (cryoTEM), revealing spherical micelles with a diameter of approximately 200 nm for the diblock and a mixture of spherical micelles and network particles for the tri-block PEC micelles. The micelles were not affected by dilution down to a polymer concentration of 7.8 × 10−4% (approx. 0.03 μM). Responsiveness to salinity, pH, and temperature was studied using DLS, revealing a critical NaCl concentration of 1.1 M for the block copolymer micelles.

Graphical abstract: Lowest gelation concentration in a complex-coacervate-driven self-assembly system, achieved by redox-RAFT synthesis of high molecular weight block polyelectrolytes

Supplementary files

Article information

Article type
Paper
Submitted
21 Jun 2024
Accepted
24 Sep 2024
First published
24 Sep 2024
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2024,20, 8727-8741

Lowest gelation concentration in a complex-coacervate-driven self-assembly system, achieved by redox-RAFT synthesis of high molecular weight block polyelectrolytes

A. Guzik, F. de Maere d'Aertrycke, M. C. A. Stuart and P. Raffa, Soft Matter, 2024, 20, 8727 DOI: 10.1039/D4SM00763H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements