Issue 43, 2024

Tuning collective actuation of active solids by optimizing activity localization

Abstract

Active solids, more specifically elastic lattices embedded with polar active units, exhibit collective actuation when the elasto-active feedback, generically present in such systems, exceeds some critical value. The dynamics then condensates on a small fraction of the vibrational modes, the selection of which obeys non trivial rules rooted in the nonlinear part of the dynamics. So far, the complexity of the selection mechanism has limited the design of specific actuation. Here, we investigate numerically how localizing activity to a fraction of modes enables the selection of non-trivial collective actuation. We perform numerical simulations of an agent-based model on triangular and disordered lattices and vary the concentration and the localization of the active agents on the lattice nodes. Both contribute to the distribution of the elastic energy across the modes. We then introduce an algorithm, which, for a given fraction of active nodes, evolves the localization of the activity in such a way that the energy distribution on a few targeted modes is maximized – or minimized. We illustrate on a specific targeted actuation, how the algorithm performs as compared to manually chosen localization of the activity. While, in the case of the ordered lattice, a well-educated guess performs better than the algorithm, and the latter outperform the manual trials in the case of the disordered lattice. Finally, the analysis of the results in the case of the ordered lattice leads us to introduce a design principle based on a measure of the susceptibility of the modes to be activated along certain activation paths.

Graphical abstract: Tuning collective actuation of active solids by optimizing activity localization

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
15 Jul 2024
Accepted
07 Oct 2024
First published
10 Oct 2024

Soft Matter, 2024,20, 8570-8580

Tuning collective actuation of active solids by optimizing activity localization

D. Lazzari, O. Dauchot and C. Brito, Soft Matter, 2024, 20, 8570 DOI: 10.1039/D4SM00868E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements