Issue 39, 2024

Periodic cylindrical bilayers self-assembled from biblock polymers

Abstract

Amphiphilic polymers in aqueous solutions can self-assemble to form bilayer membranes, and their elastic properties can be captured using the well-known Helfrich model involving several elastic constants. In this paper, we employ the self-consistent field model to simulate sinusoidal bilayers self-assembled from diblock copolymers where an appropriate constraint term is introduced to stabilize periodic bilayers with prescribed amplitudes. Then, we devise several methods to extract the shape of these bilayers and examine the accuracy of the free energy predicted by the Helfrich model. Numerical results show that when the bilayer curvature is small, the Helfrich model predicts the excess free energy more accurately. However, when the curvature is large, the accuracy heavily depends on the method used to determine the shape of the bilayer. In addition, the dependence of free energy on interaction strength, constraint amplitude, and constraint period are systematically studied. Moreover, we have devised a method for attaining equilibrium states through the adjustment of constraints. Within the self-consistent field model, these equilibrium states manifest as distinct periodic cylindrical bilayers, which are consonant with the theoretical predictions formulated using the shape equations.

Graphical abstract: Periodic cylindrical bilayers self-assembled from biblock polymers

Article information

Article type
Paper
Submitted
10 Aug 2024
Accepted
19 Sep 2024
First published
30 Sep 2024

Soft Matter, 2024,20, 7936-7945

Periodic cylindrical bilayers self-assembled from biblock polymers

Y. Luo, M. Yang, S. Li, Y. Di and Y. Cai, Soft Matter, 2024, 20, 7936 DOI: 10.1039/D4SM00961D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements