Issue 46, 2024

Enhanced gravitational trapping of bottom-heavy Janus particles over parallel microgrooves

Abstract

We report a systematic study on the barrier-crossing dynamics of bottom-heavy self-propelled particles (SPPs) over a one-dimensional periodic potential landscape U0(x), which is fabricated on a microgroove-patterned polydimethylsiloxane (PDMS) substrate. From the measured steady-state probability density function (PDF) P(x;F0) of the SPPs with different self-propulsion forces F0, we find that the escape dynamics of slow-rotating SPPs over the periodic potential U0(x) can be well described by an activity-dependent potential Ũ0(x;F0) under the fixed angle approximation. A theoretical model is developed to include the effects of the gravitational-torque-induced alignment on the polar angle θ and the hydrodynamic wall alignment on the azimuthal angle φ as well as their influence on the self-propulsion speed v0. By introducing a proper average of the activity-dependent potential Ũ0(x;F0) over all possible particle orientations, our model explains the enhanced trapping effect on the bottom-heavy Janus particles. The obtained theoretical results are in good agreement with both the experimental and active Brownian particle simulation results. This work thus provides a thermodynamics description of the non-equilibrium barrier crossing of the Janus particles with nonuniform angular distributions over periodic potentials.

Graphical abstract: Enhanced gravitational trapping of bottom-heavy Janus particles over parallel microgrooves

Article information

Article type
Paper
Submitted
17 Aug 2024
Accepted
29 Oct 2024
First published
01 Nov 2024

Soft Matter, 2024,20, 9208-9218

Enhanced gravitational trapping of bottom-heavy Janus particles over parallel microgrooves

Y. Wen, J. Liu, W. Wang, P. Lai and P. Tong, Soft Matter, 2024, 20, 9208 DOI: 10.1039/D4SM00989D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements