Issue 11, 2024

Enzymatic polymerization of furan-based polymers in biobased solvents

Abstract

The demand for biobased polymers is on the rise, driven by increasing environmental awareness and the imperative for sustainability. Biobased materials, which offer renewability, have emerged as a solution to the depletion of petroleum-based resources. Among biobased raw materials, 2,5-furandicarboxylic acid (2,5-FDCA) has gained prominence as an extensively studied monomer in the last decade. Polyesters based on 2,5-FDCA have shown compatibility and potential as biobased alternatives to polyethylene terephthalate (PET) for packaging applications. Besides FDCA, 2,5-bis(hydroxymethyl)furan (2,5-BHMF), a furan hetero-aromatic diol derivable from carbohydrates, has been identified as a versatile building block, presenting interesting properties for polymeric materials. In adherence to sustainability principles, the choice of catalyst for biobased polymer production is crucial. Biocatalysts, such as enzymes, not only provide renewability but also offer advantages such as mild reaction conditions, aligning with sustainable practices. However, many enzymatic polymerizations are reported in organic solvents, that are not environmentally friendly and/or non-renewable. To address this issue, this study explored the use of biobased solvents—namely, p-cymene, pinacolone, and D-limonene—for the enzymatic polymerization of dimethyl 2,5-furan dicarboxylate (2,5-FDCA-based) polyesters and copolyesters with 2,5-BHMF. By employing Candida antarctica lipase B (CALB), the enzymatic polymerization of this enzyme, particularly with p-cymene, has demonstrated high performance, resulting in high-molecular-weight polyester and copolyester products up to 7000 and 12 800 g mol−1, respectively. This study examined the thermal properties and crystallinity of the obtained products by analyzing their structure–property relationships. This research contributes to the advancement of sustainable polymer synthesis by considering biobased raw materials, environmentally friendly catalysts, and biobased solvents.

Graphical abstract: Enzymatic polymerization of furan-based polymers in biobased solvents

Supplementary files

Article information

Article type
Paper
Submitted
04 Jul 2024
Accepted
13 Sep 2024
First published
13 Sep 2024
This article is Open Access
Creative Commons BY-NC license

RSC Sustain., 2024,2, 3436-3450

Enzymatic polymerization of furan-based polymers in biobased solvents

F. Silvianti, D. Maniar, T. C. de Leeuw, J. van Dijken and K. Loos, RSC Sustain., 2024, 2, 3436 DOI: 10.1039/D4SU00358F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements