Insights into the plasmonic “hot spots” and efficient hot electron injection induced by Ag nanoparticles in a covalent organic framework for photocatalytic H2 evolution†
Abstract
The effective utilization of the local surface plasmon resonance (LSPR) effect of metal nanoparticles to improve optical absorption capacity and inject hot electrons into photocatalysts opens up new directions and ideas to solve the problem of solar energy utilization efficiency of photocatalysts. In this study, we created an in situ technique for preparing plasmon Ag nanoparticles (NPs) decorated with a covalent organic framework (COF), named Ag/TpPa-1-COF. The LSPR effect of Ag NPs results in an outstanding rate of H2 production that is 801.4 μmol g−1 h−1 for the 3% Ag/TpPa-1 photocatalyst, which is almost 4 times as effective as that of the unmodified TpPa-1-COF. Moreover, finite-difference time-domain (FDTD) simulation results reveal that the strongest electric field intensity is presented when the catalyst is excited at λ = 465 nm. Furthermore, plasmonic “hot spots” induced by the interfacial electric field enhancement factor distribution of Ag/TpPa-1 were simulated in detail by adjusting the number, particle size, and gap distance of Ag NPs. Additionally, density functional theory (DFT) calculations show that electron transfer from Ag NPs to TpPa-1 occurs at the Ag/TpPa-1 interface, and N sites in Ag/TpPa-1 exhibit low Gibbs free energy (ΔGH*) for enhanced photocatalytic H2 evolution. Overall, this research provides new insights into the plasmonic “hot spot” region that performs effectively for hydrogen evolution.
- This article is part of the themed collection: Today's Simulations: Pioneering the Experiments of Tomorrow