Solid-State Organic Electrochemical Transistors (OECT) Based on Gel Electrolytes for Biosensors and Bioelectronics

Abstract

Organic electrochemical transistors (OECTs) have emerged as promising platforms for biosensors and bioelectronic devices due to their biocompatibility, low power consumption, and sensitivity in amplifying chemical signals. This review delves into the recent advancements in the field of biosensors and bioelectronics utilizing solid-state OECTs with flexible gel electrolytes. Gel electrolytes, including hydrogels and ionic liquid gels, offer improved mechanical compatibility and stability compared to traditional liquid electrolytes, making them suitable for wearable and implantable biosensing applications. We explore the properties and classifications of gel electrolytes for OECTs, highlighting their self-healing, responsive, temperature-resistant, adhesive, and stretchable characteristics. Moreover, we discuss the application of solid-state OECTs based on gel electrolytes in ion sensing, metabolite detection, and electrophysiological sensing. Despite significant progress, challenges such as manufacturing scalability and the development of responsive OECTs persist. Future directions involve leveraging the multi-responsiveness of hydrogel electrolytes for intelligent sensor designs, integrating solid-state OECTs with energy storage devices for self-powered applications, and advancing wireless communication functionalities for real-time health monitoring. This comprehensive overview provides insights into the potential of solid-state OECTs based on gel electrolytes and outlines future research directions in biosensing and bioelectronics.

Article information

Article type
Review Article
Submitted
30 Jul 2024
Accepted
18 Nov 2024
First published
20 Nov 2024
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2024, Accepted Manuscript

Solid-State Organic Electrochemical Transistors (OECT) Based on Gel Electrolytes for Biosensors and Bioelectronics

D. Lu and H. Chen, J. Mater. Chem. A, 2024, Accepted Manuscript , DOI: 10.1039/D4TA05288A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements