Issue 47, 2024

Sustainable castor oil-derived cross-linked poly(ester-urethane) elastomeric films for stretchable transparent conductive electrodes and heaters

Abstract

Substrates are essential for flexible and stretchable devices, requiring sustainability, stretchability, transparency, thermal stability, and chemical stability. This study introduces a sustainable cross-linked poly(castor oil-co-δ-valerolactone)cyclohexyl urethane (PCVU) substrate for flexible, stretchable transparent conducting electrodes (TCEs) based strain sensors and heaters. PCVU is synthesized as a highly transparent (>90%), stretchable (>190%), and thermally stable (∼210 °C) substrate via thermal cross-link polymerization of poly(castor oil-co-δ-valerolactone)triol and 4,4′-methylenebis(cyclohexyl isocyanate) on a glass mold. PCVU exhibits high chemical stability in various organic solvents and good degradability in acidic (pH 0, 45% degradation), alkaline (pH 14, 100% degradation), and phosphate buffer (pH 7.2, 9% degradation) aqueous solutions over 150 days. Using PCVU, we fabricated a robust, flexible, and stretchable TCE with low sheet resistance (<50 Ω sq−1). The TCE fabrication process involves applying an electrospun polyvinyl alcohol (PVA) layer as a temporary wet film leveling agent to improve the dispersion and adhesion of silver nanowires (AgNWs) on PCVU films, followed by a heat-based nano-welding technique to enhance the durability and mechanical stability of the TCE. The TCE-based strain sensor showed stable and repeatable resistance changes (ΔR/R0) under 5–15% strains, with fast response and consistent signal stability over 100 cycles at 5% strain. The flexible heater reached a maximum average temperature of ∼150 °C at 5.5 V, with rapid heating and cooling responses (15 s each). Practical applications include a strain sensor for real-time monitoring of human motion (finger, wrist, elbow, and neck flexion) and a heater used as a thermotherapy pad for the wrist and finger, demonstrating the potential of PCVU-based TCEs for wearable and medical devices.

Graphical abstract: Sustainable castor oil-derived cross-linked poly(ester-urethane) elastomeric films for stretchable transparent conductive electrodes and heaters

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
31 Jul 2024
Accepted
31 Oct 2024
First published
06 Nov 2024
This article is Open Access
Creative Commons BY license

J. Mater. Chem. A, 2024,12, 33177-33192

Sustainable castor oil-derived cross-linked poly(ester-urethane) elastomeric films for stretchable transparent conductive electrodes and heaters

T. Laukkanen, P. G. Reddy, A. Barua, M. Kumar, K. Kolpakov, T. Tirri and V. Sharma, J. Mater. Chem. A, 2024, 12, 33177 DOI: 10.1039/D4TA05338A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements