Alloying induced superionic β-phase formation in Mg3Sb2 based Zintl compounds†
Abstract
The off-centering phenomenon manifests as locally distorted configurations with broken symmetry in a crystal structure due to the displacement of constituent atoms from their ideal coordination centers within the lattice. In contrast to the anticipated formation of anionic solid solutions of Mg3(Sb1−x−yBixGey)2, herein we report β-Mg3(Sb, Bi)2 based superionic phase formation (space group – Ia, 206) with off-centering of the dominant trigonal α-Mg3(Sb, Bi)2 phase and segregation of nanophase Mg3Ge upon equiatomic (Bi, Ge) alloying. The discordant nature of Ge is unveiled within the layered α-Mg3(Sb, Bi)2 structure and is assessed employing (3 + 1) dimensional superspace to reveal an off-centering (dz) along the z direction for the constituent atoms in the range of ±0–0.02 Å. The (Bi, Ge) alloying results in favourable tuning of the desired p-type conduction for attaining higher power factors by band engineering and synergistic reduction of lattice thermal conductivity. The stable superionic polymorph co-existing in an anionic solid solution of Mg3(Sb, Bi)2 provides a renewed basis for understanding the crystal structure and its transformation in CaAl2Si2-type Zintl compounds.
- This article is part of the themed collection: Journal of Materials Chemistry A HOT Papers