Issue 11, 2024

Preventing biofilm formation and eradicating pathogenic bacteria by Zn doped histidine derived carbon quantum dots

Abstract

Bacterial infections are of major medical concern due to antibiotic resistance. Carbon quantum dots (CDs) have emerged as potentially excellent biomaterials for multifunctional applications due to their low toxicity, outstanding water solubility, high fluorescence, and high biocompatibility. All of these properties allow CDs to be exceptional biomaterials for inhibiting the growth of bacteria and stopping biofilm formation due to their strong binding affinity, cell wall penetration, and solubilizing biofilm in water. Here, we describe a strategy for one-pot synthesis of histidine-derived zinc-doped N-doped CDs (Zn-NCDs) by a hydrothermal method for inhibiting the growth of both Gram-positive and Gram-negative bacteria without harming mammalian cells. The NCDs and Zn-NCDs showed uniform sizes (∼6 nm), crystallinity, good photostability, high quantum yield (76%), and long decay time (∼5 ns). We also studied their utilization for live cell bio-imaging and the antimicrobial properties towards the Gram-positive Staphylococcus aureus and the Gram-negative Pseudomonas aeruginosa. Importantly, the Zn-NCDs could penetrate the biofilm and bacterial cell wall to effectively inhibit the growth of bacteria and subsequently inhibit biofilm formation. Thus, the structure, chemical composition, and low toxicity properties of the newly-developed Zn-NCDs exemplify a promising novel method for the preparation of nano-level antibacterial drugs.

Graphical abstract: Preventing biofilm formation and eradicating pathogenic bacteria by Zn doped histidine derived carbon quantum dots

Supplementary files

Article information

Article type
Paper
Submitted
22 Oct 2023
Accepted
11 Jan 2024
First published
11 Jan 2024
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. B, 2024,12, 2855-2868

Preventing biofilm formation and eradicating pathogenic bacteria by Zn doped histidine derived carbon quantum dots

V. B. Kumar, M. Lahav and E. Gazit, J. Mater. Chem. B, 2024, 12, 2855 DOI: 10.1039/D3TB02488A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements