Effects of the multiscale porosity of decellularized platelet-rich fibrin-loaded zinc-doped magnesium phosphate scaffolds in bone regeneration
Abstract
In recent years, metallic ion-doped magnesium phosphate (MgP)-based degradable bioceramics have emerged as alternative bone substitute materials owing to their excellent biocompatibility, bone-forming ability, bioactivity, and controlled degradability. Conversely, incorporating a biomolecule such as decellularized platelet-rich fibrin (d-PRF) on scaffolds has certain advantages for bone tissue regeneration, particularly in enhanced osteogenesis and angiogenesis. The present study focuses on the impact of d-PRF-loaded multiscale porous zinc-doped magnesium phosphate (Zn-MgP) scaffolds on biodegradability, biocompatibility, and bone regeneration. Scaffolds were fabricated through the powder-metallurgy route utilizing naphthalene as a porogen (porosity = 5–43%). With the inclusion of a higher porogen, a higher fraction of macro-porosity (>20 μm) and pore interconnectivity were observed. X-ray diffraction (XRD) studies confirmed the formation of the farringtonite phase. The developed scaffolds exhibited a minimum ultimate compressive strength (UCS) of 8.5 MPa (for 40 Naph), which lies within the range of UCS of the cancellous bone of humans (2–12 MPa). The in vitro assessment via immersion in physiological fluid yielded a higher deposition of the calcium phosphate (CaP) compound in response to increased macro-porosity and interconnectivity (40 Naph). Cytocompatibility assessed using MC3T3-E1 cells showed that the incorporation of d-PRF coupled with increased porosity resulted the highest cell attachment, proliferation, and viability. For further evaluation, the developed scaffolds were implanted in in vivo rabbit femur condylar defects. Radiography, SEM, OTC labelling, and histology analysis after 2 months of implantation revealed the better invasion of mature osteoblastic cells into the scaffolds with enhanced angiogenesis and superior and accelerated healing of bone defects in d-PRF-incorporated higher porosity scaffolds (40 Naph). Finally, it is hypothesized that the combination of d-PRF incorporation with multiscale porosity and increased interconnectivity facilitated better bone-forming ability, good biocompatibility, and controlled degradability within and around the Zn-doped MgP scaffolds.