Issue 7, 2024

Acceptor modification of diindolocarbazole embedded multiple-resonance emitters for efficient narrowband deep-blue OLEDs with CIEy ≤ 0.08 and alleviated efficiency roll-off

Abstract

Diindolocarbazole embedded multiple-resonance emitters have shown unique advantages in achieving narrowband deep-blue organic lighting emitting diodes (OLEDs). However, the severe efficiency roll-off still challenges their further applications. Herein, two efficient narrowband deep-blue emitters, pICz-PPO and pICz-2PPO, are designed and synthesized via an acceptor modification strategy to optimize the charge carrier mobility and thus the efficiency roll-off issue is addressed. Both emitters show narrowband deep-blue emission with narrow full width at half maximum (FWHM), high efficiency, and excellent color purity. The pICz-2PPO device exhibits a high maximum external quantum efficiency (EQEmax) of 17.7% and pure deep-blue emission peaking at 441 nm with a narrow FWHM of 24 nm and CIE coordinates of (0.16, 0.07). More importantly, the significantly alleviated efficiency roll-off is achieved by taking advantage of the balanced charge carrier mobility introduced by the PPO unit with excellent electron-transporting ability, manifesting that the appropriate charge carrier mobility modification can validly suppress the efficiency roll-off without the sacrifice of the efficiency and color purity. Surprisingly, the pICz-2PPO device exhibits the highest EQE of 12.8% amongst all the reported deep-blue devices based on pICz derivatives (below 10%) at an equivalent brightness of 100 cd m−2. This work provides guidance to develop efficient multiple-resonance materials for OLEDs with low efficiency roll-off.

Graphical abstract: Acceptor modification of diindolocarbazole embedded multiple-resonance emitters for efficient narrowband deep-blue OLEDs with CIEy ≤ 0.08 and alleviated efficiency roll-off

Supplementary files

Article information

Article type
Paper
Submitted
18 Oct 2023
Accepted
06 Jan 2024
First published
08 Jan 2024

J. Mater. Chem. C, 2024,12, 2485-2492

Acceptor modification of diindolocarbazole embedded multiple-resonance emitters for efficient narrowband deep-blue OLEDs with CIEy ≤ 0.08 and alleviated efficiency roll-off

S. Wang, J. Zhou, J. Jin, M. Mai, C. Tsang, L. Y. S. Lee, L. Duan and W. Wong, J. Mater. Chem. C, 2024, 12, 2485 DOI: 10.1039/D3TC03808D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements