Issue 27, 2024

Magnetic anisotropy evolution with Fe content in electrodeposited Ni100−xFex thin films

Abstract

In this study, we have experimentally and theoretically determined how the magnetic anisotropy of Ni100−xFex thin films evolves as a function of the Fe content in electrodeposited samples. When the Fe content is below 12 at%, stripe domains are promoted once the thickness exceeds a critical value. For an Fe content of 7 at%, the transcritical shape is present in the hysteresis loop for a thickness of 600 nm. However, for compositions equal to or above 12 at%, we have not found evidence of stripe domains, as indicated by the absence of the transcritical shape in the hysteresis loops for layer thicknesses as high as 1 μm even if a magnetic field is applied perpendicular to the sample plane during growth. All the studied layers are polycrystalline with a 〈111〉 texture. The experimental results are understood in the framework of a theoretical model which considers different contributions to the magnetic anisotropy: magnetocrystalline, magnetoelastic, magnetostatic and from pairs. Out-of-plane anisotropy promoted by columnar growth has not been considered as the saccharine-based electrolyte used for the electrodeposition prevents it. In fact, the magnetic anisotropy related to pairs, which is not generally taken into account in models for Ni100−xFex, appears to play a crucial role in these thin films. Fitting of the experimental results to this model reveals that the local anisotropy generated by pairs can be as high as 3.30 × 106 J m−3. This theoretical and experimental combined investigation highlights the relevance of all these fundamental mechanisms for the understanding and tuning of magnetic materials.

Graphical abstract: Magnetic anisotropy evolution with Fe content in electrodeposited Ni100−xFex thin films

Supplementary files

Article information

Article type
Paper
Submitted
25 Mar 2024
Accepted
04 Jun 2024
First published
05 Jun 2024
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2024,12, 10104-10109

Magnetic anisotropy evolution with Fe content in electrodeposited Ni100−xFex thin films

A. Begué, N. Cotón and R. Ranchal, J. Mater. Chem. C, 2024, 12, 10104 DOI: 10.1039/D4TC01189A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements