Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Exploring high-efficiency broadband green phosphors that match the eye's natural perception to produce light-emitting diodes (LEDs) with vivid color reproduction and exceptional saturated colors is highly desired. Herein, bright green luminescence is revealed in an all-inorganic single-phase Ce3+-activated broadband garnet-type BaY2Sc2Al2SiO12 (BYSASO:Ce3+) phosphor. Under 439 nm InGaN-based blue LED chip irradiation, the representative BYSASO:3%Ce3+ sample shows a suitable green emission with the maximum emission peak position located at 532 nm and an impressive full width at half-maximum (FWHM) of 125 nm, which can cover more cyan gap without sacrificing the green components. High internal quantum efficiency (IQE = 80.1%), outstanding thermal resistance behavior (73.9%@423 K) and color stability, and appropriate CIE color coordinates of (0.3700, 0.5394) make this excellent optical material suitable for industrial application. Finally, a prototype warm white LED device is obtained with the proposed green-emitting BYSASO:3%Ce3+ phosphor and a commercial red-emitting (Ca,Sr)AlSiN3:Eu2+ phosphor upon blue chip excitation, exhibiting extraordinary optical properties with a satisfactory Ra of 93.3 and comfortable CCT of 3958 K, as well as an excellent luminous efficacy of 105.3 lm W−1. The results indicate that the green-emitting BYSASO:Ce3+ garnet phosphor has remarkable potential to serve as a conversion material for high-quality illumination.

Graphical abstract: Highly efficient and thermally stable broadband green-emitting BaY2Sc2Al2SiO12:Ce3+ phosphors enabling warm-white LEDs with high luminous efficacy and high color rendering index

Page: ^ Top