Design of inexpensive, magnetically separable MnFe2O4/poly meta-amino phenol (PmAP) heterostructure: catalyst for bisphenol A & reactive blue 19 mineralisation†
Abstract
Organic effluents from industries, especially bisphenol A (BPA) and dyes, pose a growing threat to living creatures due to their resistance to biodegradation and carcinogenic nature. This research emphasizes the design and fabrication of an inexpensive and magnetically separable MnFe2O4/poly meta-aminophenol heterostructure as a catalyst for the mineralization of two persistent pollutants viz. BPA and Reactive Blue 19 (RB-19). The structural and magnetic properties of the MnFe2O4/PmAP heterostructure (MnP-10) revealed its potential as an efficient and magnetically recoverable catalyst highlighting its practical usability and repeated use in wastewater purification. The heterostructure of MnP-10 was confirmed through various techniques by XRD, XPS, SEM, TEM/HRTEM as well as BET surface area and optical property measurements. The stability and recyclability of the MnP-10 catalyst were confirmed through XRD and VSM studies of fresh and reused catalyst. The catalyst showed 100% efficiency for mineralization of BPA and RB-19 within 60 min of visible light illumination. The TOC and GC-MS analyses confirmed the efficient removal of organic contents after the reaction. The cost-effectiveness and stability of the developed catalyst make it an attractive contender for wastewater treatment applications, addressing the growing concerns connected with the removal of stubborn organic contaminants.