Bimetallic nanoparticles: advances in fundamental investigations and catalytic applications

Abstract

Bimetallic nanoparticles provide promising active sites for many reactions, and such materials can be synthesized with different spatial distributions, such as disordered alloys, core–shell structures, and Janus-type heterogeneous structures. Catalytic activity, selectivity, and stability of bimetallic nanoparticles can be modified by the geometric, electronic, multifunctional and mixing effects, as compared with single metals. Accurate control of bimetallic compositions and their distributions is crucial to obtain high-performance catalysts. The present review summarizes the recent advances in preparation methods and catalytic applications of supported bimetallic nanomaterials. In addition, representative case studies are also provided to investigate how bimetallic nanoparticles can be used as desired catalysts and how specific functional catalysts are designed for targeted reactions. The structure–performance relationships of supported bimetallic catalysts for a number of reactions are discussed to achieve a fundamental understanding. Synthetic strategies and perspectives for precise control of bimetallic active components and element distributions with distinctive nanostructures are proposed for potential industrial applications.

Graphical abstract: Bimetallic nanoparticles: advances in fundamental investigations and catalytic applications

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Critical Review
Submitted
29 Jun 2024
Accepted
29 Sep 2024
First published
21 Oct 2024
This article is Open Access
Creative Commons BY license

Environ. Sci.: Adv., 2024, Advance Article

Bimetallic nanoparticles: advances in fundamental investigations and catalytic applications

H. Lin, Y. Liu, J. Deng, L. Jing, Z. Wang, L. Wei, Z. Wei, Z. Hou, J. Tao and H. Dai, Environ. Sci.: Adv., 2024, Advance Article , DOI: 10.1039/D4VA00241E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements