An Integrated Microfluidic Chip for Rapid and Multiple Antimicrobial Susceptibility Testing
Abstract
The overuse and misuse of antibiotics have caused the development of antimicrobial resistance (AMR), which poses a significant threat to human health. Antimicrobial susceptibility testing (AST) serves as an effective tool for assessing the susceptibility of pathogens infecting patients and guiding the precise use of antibiotics. The conventional AST method, however, is limited by prolonged incubation times and high reagent consumption. In this study, we introduce an integrated microfluidic platform, enabling multiple AST and minimum inhibitory concentration (MIC) determinations after 2 hours incubation. Sample loading is achieved using a self-priming and vacuum-driven approach, enhancing operational feasibility and preventing cross-contamination during reagent pre-coating. Moreover, the use of chips with pre-coated antibiotics minimizes the need for reagent handling off-chip, thereby enhancing the flexibility of the microfluidic device and making the platform easy-to-use. The AST on-chip results for Klebsiella pneumoniae (K. pneumoniae) S1 correlate well with broth dilution methods. This integrated microfluidic platform offers a novel approach for rapid AST, demonstrating improved customization and efficiency for AST assays. Its holds potential for addressing multi-drug resistant bacterial strains and accommodating diverse screening scenarios in modern clinical diagnostics.