Issue 8, 2025

A perylene-based fluorescent probe for highly efficient SDS detection

Abstract

Sodium dodecyl sulfate (SDS) is widely used in numerous household products and pharmaceuticals due to its excellent water solubility, emulsification, foaming, and dispersing properties. However, the extensive use of SDS has made it a significant environmental pollutant, posing a great threat to aquatic ecosystems. Therefore, developing a rapid, efficient, and sensitive probe for detecting SDS in aqueous environments is crucial. In this study, we present a cationic imidazolium-conjugated perylene bisimide (PBI) compound, as an effective probe for detecting SDS in aqueous media. The probe exhibits a distinct color change from dark pink to light pink upon interaction with SDS, making it a simple yet powerful tool for naked-eye detection. Moreover, the strong electrostatic interaction between the positively charged PBI compound and the negatively charged sulfate group in SDS leads to the formation of closely packed molecular aggregates. This results in significant quenching of fluorescence emission, enabling the detection of SDS at micromolar concentrations. We further demonstrate the practical application of PBI compound for sensitive and selective fluorometric detection of SDS in home-care items and tap water samples. These findings highlight the potential of such compounds as versatile tools for both environmental monitoring and product safety applications involving sulfate-containing species.

Graphical abstract: A perylene-based fluorescent probe for highly efficient SDS detection

Supplementary files

Article information

Article type
Paper
Submitted
22 Nov 2024
Accepted
20 Jan 2025
First published
31 Jan 2025
This article is Open Access
Creative Commons BY-NC license

Anal. Methods, 2025,17, 1784-1789

A perylene-based fluorescent probe for highly efficient SDS detection

A. Kaur, M. Bagherifard, A. B. Anderson, N. Tariq, Z. Syrgiannis and I. Spanopoulos, Anal. Methods, 2025, 17, 1784 DOI: 10.1039/D4AY02122C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements