3D-Printed Electrodes for Electrochemical Detection of Environmental Analytes
Abstract
Environmental monitoring faces increasing demands for rapid, sensitive, and cost-effective analytical methods to detect various pollutants. Three-dimensional (3D) printing technology has emerged as a transformative approach for fabricating electrochemical sensors, offering unprecedented flexibility in electrode design and potential for customization. This comprehensive review examines recent advances in 3D-printed electrochemical sensors for environmental analysis, focusing on manufacturing technologies, materials development, and surface modification strategies. We analyze various printing approaches, including fused deposition modeling, stereolithography, and selective laser melting, discussing their relative advantages and limitations for electrode fabrication. The review explores conductive materials development, from carbon-based composites to novel metal-containing filaments, and examines crucial surface modification techniques that enhance sensor performance. Key applications in environmental monitoring are evaluated, including the detection of heavy metals, pathogens, antibiotics, and organophosphates, with particular attention to analytical performance metrics and real-world applicability. Technical challenges are critically assessed, including limitations in printing resolution, material conductivity, and long-term stability. The review concludes by identifying promising research directions, such as the integration of advanced materials and the development of automated manufacturing processes, highlighting opportunities for improving sensor performance and commercial viability in environmental monitoring applications.