A glucose responsive multifunctional hydrogel with antibacterial properties and real-time monitoring for diabetic wound treatment†
Abstract
The healing of complex diabetic wounds with a hyperglycemic microenvironment and bacterial infection is considered an important clinical issue. In this study, glucose oxidase (GOx) and gold nanoclusters (AuNCs) were encapsulated in quaternary carboxymethyl chitosan (QCMCS)/sodium alginate oxide (OSA) hydrogels and were immersed in tannic acid (TA) solution to achieve antioxidant, antibacterial, pro-angiogenesis, pro-collagen deposition and real-time monitoring functions. In vitro studies showed that TA-QCMCS/OSA@GOx@AuNC hydrogels had inhibition rates of 98.99% and 99.99% against S. aureus and E. coli, respectively, and the survival rate of mouse fibroblasts (L929) was over 95%. In vivo studies showed that TA-QCMCS/OSA@GOx@AuNC hydrogels were 97.28% effective in healing diabetic wounds. In addition, image signals from TA-QCMCS/OSA@GOx@AuNC hydrogels can be collected in real time to accurately obtain glucose concentration values of diabetic wounds and reflect the healing status of diabetic wounds in a timely manner. The results showed that TA-QCMCS/OSA@GOx@AuNC hydrogels provide a novel idea for real-time monitoring of diabetic wound treatment.