Overcoming drug delivery challenges with lipid-based nanofibers for enhanced wound repair

Abstract

Wound healing is a dynamic, multi-phase process that includes haemostasis, tissue regeneration, cellular proliferation, and matrix modification. Traditional wound care procedures frequently encounter complications such as delayed healing and infection, demanding new therapeutic approaches. In this context, nanomaterial-based devices provide considerable benefits due to their capacity to improve medication delivery and tissue healing. We suggest a lipid-based nanofiber formulation for wound treatment that overcomes the restricted skin penetration of hydrophilic niacin, a strong wound healing agent. Niacin-loaded nanofibers (NLNFs) were manufactured utilizing glyceryl monostearate (GMS) by a self-assembly process, which included high-pressure homogenization and probe sonication for optimum nanostructure creation. The NLNFs were physicochemically characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron microscopy (SEM) and surface profilometry to determine their morphology and homogeneity, and a drop shape analyser was used to determine hydrophobicity. In vitro tests revealed prolonged drug release, great cytocompatibility, and strong antioxidant activity, indicating superior free radical scavenging capacity. Ex vivo tests, such as the Draize skin irritation test, skin permeation test, and drug retention assays, revealed low skin irritation, increased permeability, and efficient drug retention in skin layers. In vivo experiments showed rapid wound closure and positive histological results, which were backed by hemocompatibility tests such as hemolysis and whole blood clot analysis, validating the formulation's safety. ELISA results indicated that the NLNF-treated group had higher levels of critical wound-healing indicators than the controls. Overall, our findings suggest that NLNFs have tremendous potential as a unique and effective treatment alternative for controlling and improving wound healing processes.

Graphical abstract: Overcoming drug delivery challenges with lipid-based nanofibers for enhanced wound repair

Supplementary files

Article information

Article type
Paper
Submitted
18 Nov 2024
Accepted
04 Dec 2024
First published
11 Dec 2024

Biomater. Sci., 2025, Advance Article

Overcoming drug delivery challenges with lipid-based nanofibers for enhanced wound repair

A. Javaid, K. K. Sharma, P. Varshney, A. Verma and S. L. Mudavath, Biomater. Sci., 2025, Advance Article , DOI: 10.1039/D4BM01536C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements