An activation-based high throughput screen identifies caspase-10 inhibitors

Abstract

Caspases are a family of highly homologous cysteine proteases that play critical roles in inflammation and apoptosis. Small molecule inhibitors are useful tools for studying caspase biology, complementary to genetic approaches. However, achieving inhibitor selectivity for individual members of this highly homologous enzyme family remains a major challenge in developing such tool compounds. Prior studies have revealed that one strategy to tackle this selectivity gap is to target the precursor or zymogen forms of individual caspases, which share reduced structural homology when compared to active proteases. To establish a screening assay that favors the discovery of zymogen-directed caspase-10 selective inhibitors, we engineered a low-background and high-activity tobacco etch virus (TEV)—activated caspase-10 protein. We then subjected this turn-on protease to a high-throughput screen of approximately 100 000 compounds, with an average Z′ value of 0.58 across all plates analyzed. Counter screening, including against TEV protease, delineated bona fide procaspase-10 inhibitors. Confirmatory studies identified a class of thiadiazine-containing compounds that undergo isomerization and oxidation to generate cysteine-reactive compounds with caspase-10 inhibitory activity. In parallel, mode-of-action studies revealed that pifithrin-μ (PFTμ), a reported TP53 inhibitor, also functions as a promiscuous caspase inhibitor. Both inhibitor classes showed preferential zymogen inhibition. Given the generalized utility of activation assays, we expect our screening platform to have widespread applications in identifying state-specific protease inhibitors.

Graphical abstract: An activation-based high throughput screen identifies caspase-10 inhibitors

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
24 Jan 2025
Accepted
03 Feb 2025
First published
04 Feb 2025
This article is Open Access
Creative Commons BY-NC license

RSC Chem. Biol., 2025, Advance Article

An activation-based high throughput screen identifies caspase-10 inhibitors

J. O. Castellón, C. Yuen, B. Han, K. H. Andrews, S. Ofori, A. R. Julio, L. M. Boatner, M. F. Palafox, N. Perumal, R. Damoiseaux and K. M. Backus, RSC Chem. Biol., 2025, Advance Article , DOI: 10.1039/D5CB00017C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements