Recent innovations in in situ strategies to prepare metal–organic framework-based mixed matrix membranes
Abstract
Mixed matrix membranes (MMMs) composed of metal–organic frameworks (MOFs) and polymer matrixes have garnered significant attention due to their potential to overcome the permeability–selectivity trade-off inherent in polymeric membranes. Nevertheless, the application and industrial production of MOF-based MMMs have been hindered by issues such as poor interfacial compatibility and cumbersome fabrication processes. Recently, in situ strategies have emerged as promising approaches for fabricating MOF-based MMMs, offering enhanced interfacial compatibility between MOF fillers and polymers, as well as a simplified construction process. Furthermore, these strategies enable the creation of cross-linked MMMs with significantly improved interfacial compatibility and mechanical properties, which are unattainable through traditional physical mixing methods. This feature article summarizes recent advancements in the in situ preparation of MOF-based MMMs, encompassing in situ MOF growth, in situ polymerization of polymer matrixes, combined in situ methods, and in situ post-treatment. Our contributions to the field of in situ strategies include the innovative design of efficient spray technology and the formation of asymmetric MMMs. These developments pave the way for the realization of high-performance MOF-based MMMs suitable for industrial applications.