Tetraamino-driven hydrogen-bonded networks: selective self-assembly of energetic materials†
Abstract
Hydrogen bonding is crucial in the self-assembly of energetic materials. However, such dynamic networks suffer from selectivity difficulties and are susceptible to interference from the multiple assembly components. In this work, we proposed a polyamino energetic framework 2,5,6,9-tetraamino-pyrazino[2,3-d]pyridazine (TPP). With the tetraamino-driven hydrogen-bonded networks, selective self-assembly can be achieved. Several self-assembled materials were texted, and TPP-HClO4 was found to exhibit an overall performance superior to that of the benchmark heat-resistant explosive hexanitrostilbene (HNS).