Issue 5, 2025

Layer-by-layer thin films of Ti3C2 MXene and gold nanoparticles as an ideal SERS platform

Abstract

The combination of plasmonic metals and MXene, as a new and interesting member of the 2D material class, may provide unique advantages in terms of low cost, versatility, flexibility, and improved activity as an ideal surface-enhanced Raman spectroscopy (SERS) platform. Despite the recent progress, the present studies on the utilization of plasmonic metal/MXene-based SERS systems are quite limited and thereby benefits of the extraordinary properties of this combination cannot be realized. In this study, for the first time, we propose layer-by-layer (LbL) thin films of Ti3C2 MXene and gold nanoparticles (AuNPs) as a robust SERS platform (Ti3C2/AuNPs). For this, Ti3C2 MXene was synthesized from the Ti3AlC2 MAX phase, and the Ti3C2/AuNP LbL film was fabricated via a vacuum-assisted filtration method to create consecutive layers of each material. This procedure produced densely distributed AuNPs in the LbL film in a well-controlled manner. The SERS activity tests for methylene blue and DTNB as Raman reporter molecules showed that they exhibited enhancement factors of 1.5 × 106 and 1.2 × 106 and limits of detection of 1 × 10−8 M, and 2.5 × 10−8 M, respectively. Various mechanisms, including the formation of hotspots due to AuNPs on the interlayer of Ti3C2, improved surface roughness and resultant optical activity, as well as the synergistic effect between Ti3C2 and AuNPs, contributed to the resultant SERS activity to some extent. This study has proven the feasibility of the Ti3C2/AuNP LbL system as a robust SERS-based sensor platform, paving the way for its use in various biological and chemical applications.

Graphical abstract: Layer-by-layer thin films of Ti3C2 MXene and gold nanoparticles as an ideal SERS platform

Article information

Article type
Paper
Submitted
10 May 2024
Accepted
20 Dec 2024
First published
30 Dec 2024

Phys. Chem. Chem. Phys., 2025,27, 2578-2587

Layer-by-layer thin films of Ti3C2 MXene and gold nanoparticles as an ideal SERS platform

H. Mazlumoglu and M. Yilmaz, Phys. Chem. Chem. Phys., 2025, 27, 2578 DOI: 10.1039/D4CP01953A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements