Issue 3, 2025

Thermodynamics and transport in molten chloride salts and their mixtures

Abstract

Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids. Using recent developments in the theory of liquid thermophysical properties, we interpret our results on the basis of collective atomistic dynamics (phonons). We find that the properties of ionic liquids are well explained by their collective dynamics, as in simple liquids. In particular, we relate the decrease of heat capacity, viscosity, and thermal conductivity to the loss of transverse phonons from the liquid spectrum. We observe the singular dependence of the isochoric heat capacity on the mean free path of phonons, and the obeyance of the Stokes–Einstein equation relating the viscosity to the mass diffusion. The transport properties of mixtures are more complicated compared to simple liquids, however viscosity and thermal conductivity are well guided by fundamental bounds proposed recently. The kinematic viscosity and thermal diffusivity lie very close to one another and obey the theoretical fundamental bounds determined solely by fundamental physical constants. Our results show that recent advances in the theoretical physics of liquids are applicable to molten salts mixtures, and therefore that the evolution and interplay of properties common to all liquids may act as a guide to a deeper understanding of these mixtures.

Graphical abstract: Thermodynamics and transport in molten chloride salts and their mixtures

Article information

Article type
Paper
Submitted
31 Oct 2024
Accepted
16 Dec 2024
First published
18 Dec 2024

Phys. Chem. Chem. Phys., 2025,27, 1604-1615

Thermodynamics and transport in molten chloride salts and their mixtures

C. Cockrell, M. Withington, H. L. Devereux, A. M. Elena, I. T. Todorov, Z. K. Liu, S. L. Shang, J. S. McCloy, P. A. Bingham and K. Trachenko, Phys. Chem. Chem. Phys., 2025, 27, 1604 DOI: 10.1039/D4CP04180A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements