Issue 3, 2025

Frequency and time domain 19F ENDOR spectroscopy: role of nuclear dipolar couplings to determine distance distributions

Abstract

19F electron-nuclear double resonance (ENDOR) spectroscopy is emerging as a method of choice to determine molecular distances in biomolecules in the angstrom to nanometer range. However, line broadening mechanisms in 19F ENDOR spectra can obscure the detected spin-dipolar coupling that encodes the distance information, thus limiting the resolution and accessible distance range. So far, the origin of these mechanisms has not been understood. Here, we employ a combined approach of rational molecular design, frequency and time domain ENDOR methods as well as quantum mechanical spin dynamics simulations to analyze these mechanisms. We present the first application of Fourier transform ENDOR to remove power broadening and measure T2n of the 19F nucleus. We identify nuclear dipolar couplings between the fluorine and protons up to 14 kHz as a major source of spectral broadening. When removing these interactions by H/D exchange, an unprecedented spectral width of 9 kHz was observed suggesting that, generally, the accessible distance range can be extended. In a spin labeled RNA duplex we were able to predict the spectral ENDOR line width, which in turn enabled us to extract a distance distribution. This study represents a first step towards a quantitative determination of distance distributions in biomolecules from 19F ENDOR.

Graphical abstract: Frequency and time domain 19F ENDOR spectroscopy: role of nuclear dipolar couplings to determine distance distributions

Supplementary files

Article information

Article type
Paper
Submitted
21 Nov 2024
Accepted
11 Dec 2024
First published
12 Dec 2024
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2025,27, 1415-1425

Frequency and time domain 19F ENDOR spectroscopy: role of nuclear dipolar couplings to determine distance distributions

A. Kehl, L. Sielaff, L. Remmel, M. L. Rämisch, M. Bennati and A. Meyer, Phys. Chem. Chem. Phys., 2025, 27, 1415 DOI: 10.1039/D4CP04443F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements