Regulation of protein translocation through A Si3N4-CNT stacked nanopore using an embedded gold nanoparticle†
Abstract
Proteins play a crucial role in the growth, movement, and reproduction of life, and the determination of accurate protein sequences is of great significance in understanding the specific functions of proteins. Nanopore sequencing is currently the most prevalent method due to its speed, cost-effectiveness, and ability to sequence long proteins. However, its accuracy is often compromised by the rapid translocation of the sample, making it challenging to generate effective blocking signals. To address this, a protein translocation regulation device is proposed in this paper. The primary component of this device is a carbon nanotube on a silicon nitride membrane, with two holes in its sidewall to facilitate the lateral passage of proteins. Further, we have incorporated a gold nanoparticle into the carbon nanotube, which can be controlled to move within it. By manipulating the position of the gold nanoparticle, we can alter the conformation of the proteins inside the nanotube, thereby achieving varying degrees of speed reduction. In addition, we made the gold nanoparticle positively charged in our simulation environment. Under the effect of electroosmotic flow, we realized better speed reduction. This proposed device holds significant potential for large-scale protein down-rate sequencing in the future.