An improved guess for the variational calculation of charge-transfer excitations in large systems†
Abstract
Ab initio quantum-chemical methods that perform well for computing the electronic ground state are not straightforwardly transferable to electronically excited states, particularly in large molecular systems. Wave function theory offers high accuracy, but is often prohibitively expensive. Methods based on time-dependent density functional theory (TD-DFT) are crucially sensitive to the chosen exchange–correlation functional (XCF) parameterization, and system-specific tuning protocols were therefore proposed to address the method's robustness. Methods based on the variational relaxation of the excited-state electron density showcased promising results for the calculation of charge-transfer excitations, but the complex shape of the electronic hypersurface makes convergence to a specific excited state much more difficult than for the ground state when standard variational techniques are applied. We address the latter aspect by providing suitable initial guesses, which we obtain by two separate constrained algorithms. Combined with the squared-gradient minimization algorithm for all-electrons relaxation in a freeze-and-release scheme (FRZ-SGM), we demonstrate that orbital-optimized density functional theory (OO-DFT) calculations can reliably converge to the charge-transfer states of interest even for large molecular systems. We test the FRZ-SGM method on a phenothiazine-anthraquinone CT excitation in a supramolecular Pd(II) coordination cage complex as a function of the cage conformation. This compound has been studied experimentally prior to our work. We compare this freeze-and-release scheme to two XCF reparameterizations, which were recently proposed as low-cost TD-DFT-based alternatives to variational methods. Two dye–semiconductor complexes, which were previously investigated in the context of photovoltaic applications, serve as a second example to investigate the convergence and stability of the FRZ-SGM approach. Our results demonstrate that FRZ-SGM provides reliable convergence for charge-transfer excited states and avoids variational collapse to lower-lying electronic states, whereas time-dependent DFT calculations with an adequate tuning procedure for the range-separation parameter provide a computationally efficient initial estimate of the corresponding energies, with a computational cost comparable to that of configuration-interaction singles (CIS) calculations.
- This article is part of the themed collection: Festschrift for Christel Marian