ChemKANs for combustion chemistry modeling and acceleration

Abstract

Efficient chemical kinetic model inference and application in combustion are challenging due to large ODE systems and widely separated time scales. Machine learning techniques have been proposed to streamline these models, though strong nonlinearity and numerical stiffness combined with noisy data sources make their application challenging. Here, we introduce ChemKANs, a novel neural network framework with applications both in model inference and simulation acceleration for combustion chemistry. ChemKAN's novel structure augments the generic Kolmogorov–Arnold network ordinary differential equations (KAN-ODEs) with knowledge of the information flow through the relevant kinetic and thermodynamic laws. This chemistry-specific structure combined with the expressivity and rapid neural scaling of the underlying KAN-ODE algorithm instills in ChemKANs a strong inductive bias, streamlined training, and higher accuracy predictions compared to standard benchmarks, while facilitating parameter sparsity through shared information across all inputs and outputs. In a model inference investigation, we benchmark the robustness of ChemKANs to sparse data containing up to 15% added noise, and superfluously large network parameterizations. We find that ChemKANs exhibit no overfitting or model degradation in any of these training cases, demonstrating significant resilience to common deep learning failure modes. Next, we find that a remarkably parameter-lean ChemKAN (344 parameters) can accurately represent hydrogen combustion chemistry, providing a 2× acceleration over the detailed chemistry in a solver that is generalizable to larger-scale turbulent flow simulations. These demonstrations indicate the potential for ChemKANs as robust, expressive, and efficient tools for model inference and simulation acceleration for combustion physics and chemical kinetics.

Graphical abstract: ChemKANs for combustion chemistry modeling and acceleration

Article information

Article type
Paper
Submitted
27 May 2025
Accepted
25 Jul 2025
First published
28 Jul 2025
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2025, Advance Article

ChemKANs for combustion chemistry modeling and acceleration

B. C. Koenig, S. Kim and S. Deng, Phys. Chem. Chem. Phys., 2025, Advance Article , DOI: 10.1039/D5CP02009C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements