Quantum entanglement control in two-spin-1/2 NMR systems through magnetic fields and temperature
Abstract
We investigate quantum entanglement in two-spin-1/2 NMR systems at thermal equilibrium under external magnetic fields. We derive closed-form analytical expressions for the entanglement of the system and show how the entanglement depends on temperature and magnetic field strength, resulting in a threshold temperature beyond which entanglement vanishes. We demonstrate that at zero temperature, the system exhibits a quantum critical point, characterized by non-analytic behavior in the measure of entanglement. We further develop analytical criterion for level crossing, which serves as a condition for identifying quantum critical points in both homonuclear and heteronuclear systems, and apply it to multiple settings to analyze their quantum critical points. We establish a direct link between the quantum entanglement quantifier and experimentally accessible NMR observables, enabling entanglement to be quantified through NMR signal processing. This provides a practical framework for characterizing quantum correlations using standard NMR experiments. These findings provide insights into the thermal control of quantum features, with implications for quantum-enhanced NMR, low-temperature spectroscopy, and emerging quantum technologies.