Issue 3, 2025

Controllable construction of highly active Ti species in TS-1 zeotype by organic base treatment

Abstract

Regulating the microenvironment of Ti active centers in titanosilicates is of great significance in both theoretical research and practical application of titanosilicate/H2O2 systems. Herein, a novel six-coordinated Ti species containing an organic amine ligand, Ti(OSi)2(OH)2(H2O)TPA, was constructed in the TS-1 zeotype in the process of dissolution and recrystallization by hydrothermal post-treatment with tetrapropylammonium hydroxide and ammonium chloride. The newly formed hexa-coordinated Ti species promoted the activation of H2O2 significantly, responsible for the superior catalytic activity in 1-hexene epoxidation with a conversion of 35.5% compared with the untreated TS-1 (18.0%). After removal of organics by calcination, Ti(OSi)2(OH)2(H2O)TPA was transformed into Ti(OSi)2(OH)2(H2O)2 sites, which also exhibited higher epoxidation activity compared to the original framework Ti(OSi)4 sites. In addition, the acid sites of Si–OH in TS-1 zeotype were quenched by the basic amine molecules, which effectively inhibited the occurrence of side reactions such as epoxide ring opening, leading to a high epoxide selectivity of 98.6%. With the construction of highly active Ti(OSi)2(OH)2(H2O)TPA sites and without further calcination process, the obtained catalyst (denoted as TS-PN-am) exhibited not only excellent catalytic capacity but also application potential in continuous liquid-phase epoxidation.

Graphical abstract: Controllable construction of highly active Ti species in TS-1 zeotype by organic base treatment

Supplementary files

Article information

Article type
Paper
Submitted
30 Oct 2024
Accepted
09 Dec 2024
First published
19 Dec 2024

Catal. Sci. Technol., 2025,15, 722-733

Controllable construction of highly active Ti species in TS-1 zeotype by organic base treatment

S. Li, J. Tuo, R. Peng, X. Gong, Y. Ma, H. Xu and P. Wu, Catal. Sci. Technol., 2025, 15, 722 DOI: 10.1039/D4CY01313A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements