Issue 3, 2025

Enhancing activity and selectivity of palladium catalysts in ketone α-arylation by tailoring the imine chelate of pyridinium amidate (PYA) ligands

Abstract

Even though α-arylation of ketones is attractive for direct C–H functionalization of organic substrates, the method largely relies on phosphine-ligated palladium complexes. Only recently, efforts have focused on developing nitrogen-based ligands as a more sustainable alternative to phosphines, with pyridine-functionalized pyridinium amidate (pyr-PYA) N,N′-bidentate ligands displaying good selectivity and activity. Here, we report on a second generation set of catalyst precursors that feature a 5-membered N-heterocycle instead of a pyridine as chelating unit of the PYA ligand to provide less steric congestion for the rate-limiting transmetalation of the enolate. To this end, new heterocycle-functionalized PYA palladium(II) complexes containing an oxazole (5b), N-phenyl-triazole (5c), N-methyl pyrazole (5d), N-phenyl-pyrazole, (5e), N-xylyl-pyrazole (5f), and N-isopropyl-pyrazole (5g) were synthesized compared to the parent pyr-PYA complex 5a. Less packing of the palladium coordination sphere was evidenced from solid state X-ray diffraction analysis. While the catalytic activity of the oxazole system was lower, all other complexes showed higher activity. In particular, complex 5g comprised of an electron-donating and sterically demanding iPr-pyrazole chelating PYA ligand is remarkably stable towards air and moisture and shows outstanding catalytic activity with complete selectivity (>99% yield) and turnover frequencies up to 1200 h−1, surpassing that of parent 5a by one order of magnitude and rivalling the most active phosphine-based palladium systems. Kinetic studies demonstrate a first order rate-dependence on palladium and the substrate. Some deviation of linearity together with poisoning experiments suggest a mixed homogeneous/heterogeneous pathway, though the reproducible kinetics of in situ catalyst recycling experiments strongly point to a molecularly defined active species, demonstrating the high potential of PYA-based ligands.

Graphical abstract: Enhancing activity and selectivity of palladium catalysts in ketone α-arylation by tailoring the imine chelate of pyridinium amidate (PYA) ligands

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
04 Nov 2024
Accepted
18 Dec 2024
First published
18 Dec 2024
This article is Open Access
Creative Commons BY license

Catal. Sci. Technol., 2025,15, 867-877

Enhancing activity and selectivity of palladium catalysts in ketone α-arylation by tailoring the imine chelate of pyridinium amidate (PYA) ligands

E. Reusser, M. Aeschlimann and M. Albrecht, Catal. Sci. Technol., 2025, 15, 867 DOI: 10.1039/D4CY01337A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements