Understanding alkali-metal driven hydrophosphorylation: mechanism and challenges in the Pudovik reaction

Abstract

The addition of H–P(V) bonds of phosphane oxides across alkynes (hydrophosphorylation reaction) presents an effective synthetic strategy to generate alkenylphosphane oxides. This reaction requires a strong P-nucleophile, such as phosphinite, which can be generated by the reaction of a phosphane oxide with alkali metal amides, such as hexamethyldisilazanides (M-HMDS). Hydrophosphorylation exemplifies an important synthetic reaction facilitated by s-block metal bases. Extensive experimental studies have demonstrated the crucial impact of both the alkali cation and the P-bound substituent on reaction rates, product distribution, and the regio- and stereoselectivity of phosphane oxide addition. This study aims to provide a comprehensive mechanistic interpretation of the alkali metal-catalysed hydrophosphorylation reactions, employing density functional theory (DFT) calculations to clarify experimental findings. Our analysis focuses on two critical stages: 1) formation of the active alkali metal phosphinite species through the metalation–deprotonation of phosphane oxide by M-HMDS, and 2) the subsequent H–P addition onto the alkyne. Additionally, the study addresses side processes that may deactivate the active species by lowering its concentration in solution, potentially impacting the overall reaction efficiency. Computational modelling of reaction mechanisms involving s-block metal cations has been less explored than those with transition metal complexes and faces solvation and speciation as major challenges. This article also discusses the computational requirements necessary for accurate chemical modelling of these systems, as well as the limitations inherent in the employed approach.

Graphical abstract: Understanding alkali-metal driven hydrophosphorylation: mechanism and challenges in the Pudovik reaction

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
05 Mar 2025
Accepted
26 May 2025
First published
26 May 2025
This article is Open Access
Creative Commons BY-NC license

Catal. Sci. Technol., 2025, Advance Article

Understanding alkali-metal driven hydrophosphorylation: mechanism and challenges in the Pudovik reaction

I. Bozhinovska, G. Ujaque, M. Westerhausen and A. Lledós, Catal. Sci. Technol., 2025, Advance Article , DOI: 10.1039/D5CY00269A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements