Active learning high coverage sets of complementary reaction conditions

Abstract

Chemical reaction conditions capable of producing high yields over diverse reactants are a desired component of nearly all chemical and materials discovery campaigns. While much work has been done to discover individual general reaction conditions, any single conditions are necessarily limited over increasingly diverse chemical spaces. A potential solution to this problem is to identify small sets of complementary reaction conditions that, when combined, cover a larger chemical space than any one general reaction condition. In this work, we analyze experimentally derived datasets to assess the relative performance of individual general reaction conditions vs. sets of complementary reaction conditions. We then propose and benchmark active learning methods to efficiently discover these complimentary sets of conditions. The results show the value of active learning in identifying complementary sets of reaction conditions and provide an avenue for improving synthetic hit rates in high-throughput synthesis campaigns.

Graphical abstract: Active learning high coverage sets of complementary reaction conditions

Supplementary files

Article information

Article type
Paper
Submitted
11 Nov 2024
Accepted
14 Feb 2025
First published
17 Feb 2025
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2025, Advance Article

Active learning high coverage sets of complementary reaction conditions

S. L. Sivilotti, D. M. Friday and N. E. Jackson, Digital Discovery, 2025, Advance Article , DOI: 10.1039/D4DD00365A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements