Machine learning-assisted profiling of a kinked ladder polymer structure using scattering†
Abstract
Ladder polymers consisting of fused rings in the backbone have very limited conformational freedom, which results in very different properties from traditional linear polymers. However, accurately determining their size and chain conformations from solution scattering remains a challenge. Their chain conformations of kinked ladder polymers are largely governed by the structures and relative orientations or configurations of the repeat units, unlike conventional polymer chains whose bending angles between repeat units follow a unimodal Gaussian distribution. Meanwhile, traditional scattering models for polymer chains do not account for these unique structural features. This work introduces a novel approach that integrates machine learning with Monte Carlo simulations to construct a model that can describe the geometry of a type of kinked CANAL ladder polymers. We first develop a Monte Carlo simulation model for sampling the configuration space of CANAL ladder polymers, where each repeat unit is modeled as a biaxial segment. Then, we establish a machine learning-assisted scattering analysis framework based on Gaussian Process Regression. Finally, we conduct small-angle neutron scattering experiments on a CANAL ladder polymer solution to apply our approach. Our method uncovers structural features of such ladder polymers that conventional methods fail to capture.