Choosing a Suitable Acquisition Function for Batch Bayesian Optimization: Comparison of Serial and Monte Carlo Approaches

Abstract

Batch Bayesian optimization is widely used for optimizing expensive experimental processes when several samples can be tested together to save time or cost. A central decision in designing a Bayesian optimization campaign to guide experiments is the choice of a batch acquisition function when little or nothing is known about the landscape of the “black box” function to be optimized. To inform this decision, we first compare the performance of serial and Monte Carlo batch acqusition functions on two mathematical functions that serve as proxies for typical materials synthesis and processing experiments. The two functions, both in six dimensions, are the Ackley function, which epitomizes a “needle-in-haystack” search, and the Hartmann function, which exemplifies a “false optimum” problem. Our study evaluates the serial upper confidence bound with local penalization (UCB/LP) batch acquisition policy against Monte Carlo-based parallel approaches: q-log expected improvement (qlogEI) and q-upper confidence bound (qUCB), where q is the batch size. Tests on Ackley and Hartmann show that UCB/LP and qUCB perform well in noiseless conditions, both outperforming qlogEI. For the Hartmann function with noise, all Monte Carlo functions achieve faster convergence with less sensitivity to initial conditions compared to UCB/LP. We then confirm the findings on an empirical regression model built from experimental data in maximizing power conversion efficiency of flexible perovskite solar cells. Our results suggest that when empirically optimizing a “black-box” function in ≤ six dimensions with no prior knowledge of the landscape or noise characteristics, qUCB is best suited as the default to maximize confidence in the modeled optimum while minimizing the number of expensive samples needed.

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2025
Accepted
15 May 2025
First published
30 May 2025
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2025, Accepted Manuscript

Choosing a Suitable Acquisition Function for Batch Bayesian Optimization: Comparison of Serial and Monte Carlo Approaches

I. Mia, M. Lee, W. Xu, W. Vandenberghe and J. W.P. Hsu, Digital Discovery, 2025, Accepted Manuscript , DOI: 10.1039/D5DD00066A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements